Как сделать звуковой датчик

Как сделать
Содержание
  1. Подключаем датчик звука к Arduino
  2. Характеристики
  3. Простые схемы использования
  4. Некоторая информация о голосовом распознавании
  5. Структура слова
  6. Некоторые рекомендации
  7. Видео по теме
  8. Акустические датчики для освещения – чудо техники, которое экономит ваши деньги
  9. Как работают акустические датчики управления освещением
  10. Реагирующие на шум
  11. Первый вариант
  12. Второй вариант
  13. Достоинства
  14. Минусы
  15. Реле, реагирующее на команды
  16. Промышленные реле
  17. Лестничный автомат ASO-208
  18. Реле ЭВ-01
  19. Реле с Али Экспресс
  20. Самодельные акустические реле
  21. Простейшая схема на одном транзисторе
  22. Акустическое реле
  23. Триггер для управления освещением
  24. Схема на трех транзисторах
  25. Почему от одного сигнала генерация устанавливается, а от другого срывается
  26. Вариант реле с использованием микросхем
  27. Увеличение мощности нагрузки
  28. Работа в режиме реле шума
  29. Работа нагрузки не от выпрямленного тока, а от переменного

Подключаем датчик звука к Arduino

Физическое окружение человека все время «умнеет», подстраиваясь под запросы и требования хозяина. Речь, конечно же идет об автоматизированных и роботизированных вещах, облегчающих труд и выполняющих все те функции, которые существу разумному делать слишком долго, тяжело или нудно. Большая часть техники такого рода работает с управлением на основе микроконтроллеров, которые в свою очередь, можно назвать миниатюрными компьютерами, ориентированными на контроль другого, более простого оборудования.

Одним из наиболее распространенных на текущий момент, за счет удобства применения и ширины возможностей, можно назвать Arduino, недостатков у которого попросту не существует в качестве системы управления и DIY-проектов, и профессиональной техникой, используемой на крупных и серьезных производствах.

Единственный вопрос становящийся перед проектировщиками «умных» устройств, использующих микроконтроллеры – легкое ими управление человеком, то есть обеспечение простого интерфейса контроля. Одно из наиболее логичных из приходящих на ум решений – человеческий голос, отдавая команды, которыми пользователь абсолютно вербальным образом сможет управлять работой логического выключателя, конечно в рамках заложенной в того программы. Только сразу встает проблема получения голосовых последовательностей устройством. Что ж, есть и решение – платы захвата звука, среди которых в разрезе технологии Arduino сразу вспоминаются KY-037 и KY-038, унифицированные и отличающиеся только размером микрофона.

Конечно, не стоит ждать от них записи MP3 или его полнофункциональной обработки. Но в нише восприятия голосовых команд названые платы-дополнения имеют полное право на существование.

Характеристики

Характеристики у обоих устройств KY-037 и KY-038 достаточно скромные, и отличающихся, как было сказано ранее, между собой только размером микрофона.

Принципиальная схема и выводы устройства:

Сразу хочется заметить, что названые детекторы, регистрируют только достаточно громкие звуки и не очень чувствительны к их переходным состояниям, к примеру, используемым в словах или фразах. То есть, сделать выключатель или активатор реагирующий на хлопок и свист гораздо проще, чем запрограммировать систему распознавания голосовых команд с применением KY-037 или KY-038. Некоторые идеи по осуществлению требуемой функциональности будут представлены далее.

Обратите внимание на «регулятор чувствительности» отмеченный на фото платы. С его помощью можно варьировать значение характеристики, улучшая «слух» детектора, в установленных пределах.

Простые схемы использования

Чтобы продемонстрировать работу датчиков звука с Arduino можно собрать простую схему:

Резистор используемый в ней, берется номиналом в 220 Ом. Основная функциональность выражается в зажигании светодиода при обнаружении громких звуков и гашения его в случае тишины. Скетч:

// Диапазон минимальных и максимальных показателей, устанавливается
// для определения значения аналогового сигнала в тишине у платы
// захвата звука, все что будет отличаться служит указателем
// наличия изменений звукового фона. Определяется опытным путем.
const int SilenceMin = 625;
const int SilenceMax = 637;
// Задание портов IN_DIG цифровой вход с KY-037/038,
// IN_ANALOG аналоговый с нее же и OUT_LED пин управляющий светодиодом
const int OUT_LED = 9;
const int IN_ANALOG = A3;
const int IN_DIG = 1;
void setup() <
pinMode(OUT_LED, OUTPUT);
pinMode(IN_ANALOG, INPUT);
pinMode(IN_DIG, INPUT);
>
void loop() <
// Примечание от составителя: если использовать нижеприведенную
// конструкцию, светодиод будет включаться при любом изменении
// звукового фона. Для определения наличия именно команды
// стоит изменить строку на if (AnalogRead(IN_ANALOG) > SilenceMax) <
if (AnalogRead(IN_ANALOG) > SilenceMax || AnalogRead(IN_ANALOG)
Изменяя время задержки, между включением и гашением светодиода, а также пробным путем выведя значения «тишины» SilenceMax и SilenceMin, можно добиться работы приведенной схемы в роли детектора движения по звуку. Конечно, качество определения у него будет низкое, но вполне позволяющее применять конструкцию в цепях управления освещением темных мест. Достаточно добавить фоторезистор для определения текущего уровня видимости, в роли которого можно использовать специальную плату Arduino или обычный радиоэлектронный компонент, подключаемый через делитель.

Как видно по схеме, в ней используются два резистора – R1 на 10 кОм и R2 220 Ом. Светодиод LED в финальном варианте можно заменить на релейную группу, для подачи питания на «взрослые» лампы 220В. Скетч, управляющий всем перечисленным хозяйством:

#DEFINE D1 1
#DEFINE D3 3
#DEFINE A2 2
#DEFINE A4 4
// Характеристики «тишины»
const int SilenceMin = 625;
const int SilenceMax = 637;
// Задание портов: IN_DIG цифровой вход с KY-037/038, IN_ANALOG аналоговый с нее же
// OUT_LED пин управляющий светодиодом, IN_FLASH сигнал от фоторезистора.
const int IN_DIG = D1;
const int OUT_LED = D3;
const int IN_LIGHT = A2;
const int IN_ANALOG = A4;
void setup() <
pinMode(OUT_LED, OUTPUT);
pinMode(IN_ANALOG, INPUT);
pinMode(IN_DIG, INPUT);
pinMode(IN_LIGHT, INPUT);
>
void loop() <
if ( DigitalRead(IN_DIG) == HIGH && DigitalRead(IN_LIGHT) == LOW ) <
// При подключении фоторезистора, как на схеме в темноте он будет давать
// минимальный сигнал, так-как его сопротивление во мраке максимально.
// На свету будет поступать высокий уровень на вход Ардуино и этот
// блок кода не сработает
DigitalWrite(OUT_LED, HIGH);
delay(10000); // долгая задержка
DigitalWrite(OUT_LED, LOW);
>

Задержка подбирается экспериментально, в зависимости от конкретной чувствительности KY-037 или KY-038, а также их настроек, производимых регулятором на плате устройства.

Некоторая информация о голосовом распознавании

Здесь будут представлены общие идеи, позволяющие впоследствии создать систему голосового командного управления, естественно с ограничениями, накладываемыми мощностью Arduino.

Первое, что нужно учесть при проектировании – обращение к самому конкретному устройству, чтобы его функционирование не начиналось или прерывалось от случайно сказанного слова. То есть, перед отдачей команды нужно будет произносить не похожий на нее идентификатор конкретного контролера. К примеру: «К7 Включение». Описанное, кстати хорошо тем, что нет похожести согласно произносимых звуков.

Читайте также:  Как сделать земляной дом

Структура слова

Основное, на что нужно обратить внимание при проектировании систем распознавания звука – сама фонетика языка. В русском, есть гласные и согласные буквы. Последние еще и бывают шипящего, звонкого и глухого произношения. Устройства улавливающие звуковые волны, наиболее слышат, как раз, первые, вторые и третьи, а вот к последним «глуховаты». Поэтому, собственно и программировать конечный аппарат требуется именно на их определение, а не слова в целом. Опять же. Каждый человек обладает определенной дикцией и высотой тона голоса. Посудите сами, послушав, как одно и то же слово произносится мужчиной или женщиной. К тому же некоторые люди быстро проговаривают текст, другие медленнее. Все названые факторы требуется учесть при написании скетча обработки.

Еще одно ограничение, накладываемое платам KY-037 и KY-038 – падение уровня улавливаемого сигнала в зависимости от расстояния до его источника. То есть, нужно предусмотреть сравнение именно разниц поступающих пиков, а не конкретных значений.

Некоторые рекомендации

Определение лучше производить, выявив высоту тонов и длительность произношения в каждом конкретном случае, под индивидуальные характеристики голоса человека. Впоследствии, ввести в скетч усреднение полученных данных на аналоговом входе, алгоритмы которых легко можно найти через поисковые системы. Последнее действие нужно для случаев, когда оператор охрип, осип, устал или находится под действием еще каких-либо факторов, изменяющих вокальные характеристики.

Разбор последовательности звуков проводится не точным соответствием, а логическими условиями, по причине пропуска некоторых в разговорной речи. То есть, предположим, существует массив, содержащий последовательность значений гласных и шипящих, аналогичных используемым в самой команде. Тогда разбор голоса будет выглядеть следующим образом:

Просьба обратить внимание, что приведенный кусок кода служит только целям ознакомления и понимания принципов разбора. Разницу пиков, о которых говорилось ранее, алгоритм не проверяет, сравнивая только конкретные значения.

Чтобы такая нейросеть могла «распознавать» слова, подаваемые на её вход, предварительно она должна быть обучена!

Для выполнения такого обучения на вход сети подают эталонное слово, а затем с помощью специальных алгоритмов (например, обратного распространения ошибки) подбирают значения структурных коэффициентов нейронной сети, при которых нейросеть выдаёт правильное значение на выход.

Видео по теме

Источник

Акустические датчики для освещения – чудо техники, которое экономит ваши деньги

Стоимость электроэнергии постоянно возрастает, поэтому есть необходимость ее экономить. Один из способов — автоматизировать управление освещением. Один из вариантов — установить акустические датчики для освещения.

Расскажем о них подробнее, опишем способы применения, принцип работы. Также рассмотрим несколько схем этих устройств для самостоятельной сборки.

Как работают акустические датчики управления освещением

Держать включенным освещение нужно только в том случае, если в помещении или на площадке, где оно смонтировано, присутствуют люди. Исключение составляют только дежурные светильники, предназначенные для того, чтобы можно было заметить несанкционированное проникновение на территорию.

Дома оно не применяется. Для того чтобы зафиксировать появление людей, и чтобы лампы работали только в их присутствии, и предназначены датчики акустические для освещения.

Условно датчики можно разделить на два типа:

Рассмотрим каждый тип по отдельности.

Реагирующие на шум

Чаще всего для освещения акустический датчик монтируют на лестничных площадках и коридорах. В доме их устанавливать бесполезно, кроме комбинации с реле задержки отключения в санузлах и ванных (этот вариант мы рассмотрим тоже).

Если человек передвигается, то он обязательно издает звуки, пусть даже и негромкие, конечно, если нет задачи пройти бесшумно. Это стук открывающейся или закрывающейся двери, шум шагов разговоры (и даже сработавшего замка). Их и фиксирует датчик.

Совместная работа с освещением его основана на следующем принципе. Например, датчик шумовой для освещения смонтирован на лестничной площадке (о том, где их лучше устанавливать, а где нежелательно расскажем ниже), возможны два варианта.

Первый вариант

Второй вариант

Функция задержки может быть встроена как в само акустическое реле (большинство моделей), так и выполнятся с помощью дополнительных узлов.

Надо отметить, что и в первый вариант работы реле может включаться реле задержки, но только не выключения, а включения. Это делается для того чтобы защититься от ложных срабатываний. То есть освещение не включается от кратковременного шума (например, удара грома на улице или сигнала автомашины), необходимо чтобы звук продолжался в течение некоторого времени.

Реле, реагирующее на шум, имеет как достоинства, так и недостатки.

Достоинства

Минусы

Совет. Лучше совместно с акустическим реле монтировать не простой таймер, который включает и выключает его, например, в шесть вечера и восемь утра, а астрономическое реле. Это устройство при введенных географических координатах учитывает движение солнца. Например, разрешает включать реле звука за полчаса до заката и выключает через четверть часа после рассвета, вне зависимости от времени года.

Реле, реагирующее на команды

В простейшем случае это может быть звук гораздо громче, чем те, которые могут быть слышны при обычном присутствии людей в комнате. Например, хлопок в ладоши.

Автор этой статьи собирал подобную конструкцию в детстве, посещая дом пионеров. Такое реле фактически представляет собой обычное реле шума, только порог его срабатывания выше и оно различает минимум две команды.

Например, хлопнули один раз, свет зажегся, два раза погас. Его вполне можно устанавливать в жилых помещениях, правда, все-таки наверно удобнее пользоваться обычным выключателем, чем постоянно хлопать.

В более сложном варианте можно собрать устройство, которое будет различать голосовые команды. То есть реле будет различать речь, так как браузер различает «О’ Кей Гугл». Правда, промышленных вариантов этого реле пока нет в продаже.

Промышленные реле

Рассмотрим несколько моделей акустических реле, которые можно приобрести.

Лестничный автомат ASO-208

Одно из недорогих реле от белорусских производителей — его можно приобрести за 300-400 рублей (около 7-8 долларов). Устройство вполне достаточно для стандартной лестничной площадки. Как видно на фото оно, поддерживает лампочки до 150 ват, чего хватает для освещения любой лестничной площадки даже лампами накаливания (хотя если экономить, то лучше применять светодиодные, энергосберегающие).

Реле монтируется прямо на стенку и имеет встроенный микрофон. Чувствительность микрофона регулируемая.

Например, если устройство установлено далеко от входных дверей, то ее можно увеличить, если же имеется фоновый шум, то уменьшить. Регулировка осуществляется ручкой, которую можно проворачивать отверткой или любым другим подобным инструментом.

Читайте также:  Как сделать ликвидационный баланс ооо

При максимальном уровне гарантируется срабатывание даже на звон связки ключей.

В реле встроена задержка выключения на 1 минуту, после того как был распознан последний звук. Задержку, к сожалению, изменить нельзя.

Реле ЭВ-01

Это датчик шума для освещения уже российского производства (ООО «Реле и автоматика»), цена его тоже порядка 300-400 рублей. От предыдущего устройства отличается меньшей мощностью подключаемой нагрузки, всего лишь 60 Вт. Однако и этого хватит для большинства лестничных подъездов и площадок.

Как и в предыдущем случае, оно монтируется прямо на стену и имеет встроенный микрофон. Его чувствительность, к сожалению не регулируется. Производитель гарантирует срабатывание на любой звук в радиусе 5 метров. Присутствует также задержка выключения, она правда меньше всего 50 секунд.

Плюсом данного реле является наличие фотоэлемента, который разрешает работу только в темное время суток. Его чувствительность тоже не регулируется, поэтому нужно выбирать место установки устройства так, чтобы не было ложного срабатывания, например, от засветки через окно уличными фонарями.

Подключается устройство точно так же как и предыдущее, правда клеммы скрыты под крышкой корпуса.

Реле с Али Экспресс

Более дешевое устройство можно заказать на всем известной площадке Ali Express. Например, там предлагается акустическое реле Joying Liang (на сайте название: РАДУЯСЬ ЛЯН Звук Свет Управления Задержки Переключатель Поверхностного типа Энергосберегающие Акустическая Светло-активируется Реле, это последствия автоматического перевода) всего за 266 рублей.

Это устройство по своим характеристикам похоже на реле российского производителя.

Подключается реле с помощью клемм выпущенными из корпуса проводами (их можно зажать во внешний клеммник).

Самодельные акустические реле

Теперь перейдем к схемам для сборки своими руками. Приведем несколько вариантов разной сложности.

Простейшая схема на одном транзисторе

Начнем с простейшей схемы из двух блоков собственно акустического реле и триггера для управления нагрузкой.

Акустическое реле

Реле собранно всего лишь на одном транзисторе, вот его схема.

Используется старый германиевый транзистор МП 39, его легко найти в старой технике 60-90 годов выпуска, там же легко найти и остальные элементы, в том числе и диоды Д 2 Б.

Совет. Желательно не брать из старой техники электролитические конденсаторы (те на которых указана полярность, они обычно большой емкости от 0,1 микрофарада и больше). Если все остальные детали не теряют своих свойств со временем, конденсаторы высыхают.

В качестве датчика применен угольный микрофон от старого телефона ТА 68 (аналоги ТАИ 43, ТАН 40). Эти микрофоны используются в простейших телефонах с дисковым номеронабирателем, в которых не встроены усилители.

Достоинство угольного микрофона — огромная чувствительность, недостаток — узкий частотный диапазон пропускания. Но в нашем случае минус является плюсом, так как уменьшается возможность срабатывания от посторонних шумов, то есть избирательность устройства.

Работает схема следующим образом:

При чрезмерной чувствительности реле можно устроить регулировку, установив переменный или построечный резистор сопротивлением около 100 Ом последовательно с конденсатором С1.

В принципе можно включить последовательно с контактами КР1 обычное мощное реле, рассчитанное на 220 В, которое и будет управлять освещением, но такой подход не очень удобен. При исчезновении шума свет будет гаснуть. Поэтому нужно применить реле с задержкой выключения.

Схему можно собрать как навесом, так и на макетной или печатной плате. Авторский вариант представлен на фото ниже.

Для питания можно использовать любой блок питания с напряжением 9-12 вольт. В случае соблюдения всех мер безопасности, даже бестрансформаторный.

Триггер для управления освещением

Автор схемы предлагает несколько другой подход, для управления освещением — он смонтировал триггер на поляризованном реле РП 4. В данном случае после каждого звука (хлопка в ладоши) происходит переключение двух ламп. Если оставить только одну, то она будет просто включаться выключаться.

Управление освещением в этом случае будет выглядеть следующим образом:

В данной схем можно использовать любые мощные диоды, рассчитанные на ток, проходящий через ламы освещения, и напряжение 220 В, например Д245.

Обратите внимание. Конденсатор С1 тоже должен быть рассчитан на напряжение 220 В.

Работает триггер следующим образом:

Если нам необходимо чтобы триггер управлял только одной лампой, то вместо второй включаем последовательной конденсатор 0,25 мкФ х 300В и резистор 10-5 кОм мощностью не менее 2 Вт.

Схема на трех транзисторах

Это более сложная схема на трех транзисторах, зато она уже сама работает как триггер, включая освещение по первому звуку и выключая по второму.

В схеме применены тоже распространенные в радиотехнике транзисторы КТ315 и КТ818 — их можно выпаять или приобрести в любом специализированном магазине. Даже если покупать весь комплект радиодеталей, то он обойдется максимум в 70 рублей, что значительно дешевле готового акустического реле.

При напряжении питания 9 вольт чувствительность устройства порядка 2 метров. Увеличив напряжение (реле может работать в диапазоне 3,5-15 В), можно поднять ее, уменьшив — снизить. Если применить транзисторы КТ368 или их аналоги, то возможно добиться распознавания звуков на дальности более 5 метров.

Вместо отечественных транзисторов можно использовать их аналоги зарубежного производства (во многих случаях под разборку доступнее импортная техника). Например, КТ315 заменить на 2N2712 или 2SC633, КТ818 на 2N6247 или 2SB558. Вообще, схема не критична к используемым деталям.

Микрофон используется электродинамический, его можно взять тоже из сломанного магнитофона или любого другого подобного устройства — тип тоже не критичен.

Электромагнитное реле должно быть рассчитано на напряжение 220 вольт и соответствующий ток. Если через его обмотку протекает значительный ток, то желательно монтировать транзистор КТ818 на радиаторе, чтобы исключить его перегрев и выход из строя.

Работает схема следующим образом:

Для питания акустического реле тоже может использоваться небольшой блок питания, готовый (например, зарядное устройство сотового телефона) или самостоятельно собранный. Как мы уже говорили устройство работоспособно в диапазоне 3,5-15 В. Главное, чтобы напряжение соответствовало максимально допустимому для обмотки реле и его хватало для надежного замыкания контактов.

Собрать акустическое реле можно на макетной плате, а можно и изготовить печатную. Вариант автора данной схемы показан на снимке ниже.

Видео, как работает собранное реле, можно посмотреть:

Почему от одного сигнала генерация устанавливается, а от другого срывается

После прочтения описания работы устройства, у многих может возникнуть вопрос — почему один сигнал усилителя запускает генератор, а другой останавливает? Ведь они могут быть полностью идентичные, и второй, кажется, должен поддерживать работу генератора. Поясним на физическом аналоге генератора — маятнике.

Читайте также:  Как сделать ссылку альбома вконтакте

Такие же процессы происходят и в нашем реле. Конечно, возможно, что второй сигнал будет синхронным с колебаниями генератора, но вероятность этого мала. К тому же хлопнуть второй раз несложно, если реле не отреагировало на первый звук.

Вариант реле с использованием микросхем

Рассмотрим еще один вариант реле, в котором используется микросхема. Он еще интересен и тем, что не требуется отдельного блока питания, он включен в конструкцию самого устройства.

Также схема отличается и тем, что вместо электромагнитного реле используется тиристор. Такой подход позволяет увеличить надежность, у реле есть определенный ресурс (количество срабатываний), а у тиристора такого ограничения нет. К тому же управление нагрузкой с помощью полупроводникового элемента позволяет снизить габариты реле, не уменьшая мощность управляемой нагрузки.

Устройство рассчитано на работу с лампами накаливания мощностью 60-70 Вт и имеет чувствительность до 6 метров. Конструкция несложная в сборке и неплохо защищена от помех. Принципиальная схема представлена ниже.

Реле тоже не критично к деталям, возможны замены аналогами:

Теперь рассмотрим работу устройства. Чтобы не отвлекаться потом, сразу опишем принцип действия микросхемы. В ее состав входят два триггера (в переводе с английского — защелки) это видно по букве «Т» на условном обозначении элемента. На схеме они обозначены DD1.1 и DD1.2.

Триггер — это цифровое устройство. Его входы воспринимают только два типа сигнала.

Эти же сигналы формируются и на выходах питания. Триггер работает следующим образом:

Теперь подробнее о том, как работает схема:

Конденсаторы С1 и С2 служат для развязки микрофона с усилителем и обоих транзисторов между собой. Конденсатор С3 защищает усилитель от наводок по сети питания.

Таким образом, на DD1.1 собран одновибратор – устройство, которое на каждый входной импульс, вне зависимости от его формы и длительности, на выходе выдает прямоугольный импульс, с амплитудой равной напряжению логической единицы. Его длительность определяется номиналами конденсатора С4 и резистора R6 в прямой зависимости (осциллограмма сигналов в реле показана ниже). При данных величинах емкости и сопротивления, длительность импульса 0,5 сек.

Если система срабатывает нечетко, то можно продлить период импульса, увеличив сопротивление R6 (он, кстати, и отмечен на схеме звездочкой — «*», что значит подбираемый)

Чтобы были более понятны процессы, происходящие в реле, можете изучить осциллограмму сигналов формирующихся в его узлах.

Для питания реле в схеме предусмотрен бестрансформаторный блок питания, он состоит из следующих элементов.

Обратите внимание. Если все остальные резисторы могут быть небольшой мощности 0,125 Вт, то мощность этого не менее 2 Вт, иначе он неизбежно сгорит. Также при возможных модернизациях схемы его номинал придется подбирать заново, чтобы напряжение питания не было более 12 В.

Собрать схему можно и на макетной плате, но все же лучше изготовить печатную так более надежно. При сборке обратите внимание на нумерацию выводов микросхемы К561ТМ2, ее цоколевка приведена ниже.

Разместить устройство можно в любом удобном корпусе — как самостоятельно собранном, так и от других устройств.

Внимание. Все элементы устройства находятся под напряжением 220 В, будьте предельно внимательны при испытании и наладке устройства. Корпус тоже должен обеспечивать защиту от поражения электрическим током. Желательно, чтобы реле подключалось на линии электропроводки с установленным УЗО (устройством защитного отключения).

Теперь приведем несколько вариантов модернизации данной схемы.

Увеличение мощности нагрузки

Реле рассчитано на нагрузку в 60 — 70 Вт, этого вполне достаточно для лестничного освещения. Однако при необходимости ее можно увеличить. Для этого диоды моста VD2 — VD5 и тиристор VS1 нужно установить на радиаторы, которые уменьшат их нагрев.

Правда придется использовать уже диоды Д112 — Д116 они имеют резьбу под гайку для крепления на радиатор.

Чем больше площадь радиатора, тем лучше. При установке элементов на радиатор учтите следующие нюансы.

Работа в режиме реле шума

В исходном варианте реле реагирует на команды, подаваемые с помощью хлопков. Однако можно переделать ее так, что она будет реагировать на шум, как промышленные реле, представленные в нашей статье.

То есть при возникновении звука реле включает освещение, при исчезновении отключает через определенный промежуток времени. Для этого даже не придется усложнять устройство, наоборот оно упрощается. В схему вносим изменения — инструкция такова.

Совет. Можно конечно подбирать емкость и сопротивление методом проб и ошибок, но проще рассчитать. Формула следующая T=CxR.

Пример, выбираем емкость конденсатора 300 мкФ, а время задержки выключения 60 сек. Преобразуем формулу, чтобы высчитать сопротивление резистора: R=T/C, в нашем случае 60/300×10-6=200000 Ом, то есть 200 кОм. Также можно воспользоваться онлайн калькулятором, например по ссылке: http://hostciti.net/calc/physics/condenser.html.

Можно также вместо обычного резистора R6 установить переменный или построечный, потом в процессе эксплуатации реле будет легко изменять время задержки.

Все, других изменений в схему вносить не нужно.

Работа нагрузки не от выпрямленного тока, а от переменного

Питание нагрузки на нашей схеме происходит постоянным пульсирующим током, так как перед тиристорным ключом установлен диодный мост. Это не совсем правильное решение для устройства предназначенного экономить электроэнергию. Все дело в том, что от постоянного тока 220 В могут питаться только лампы накаливания. Энергосберегающие лампы рассчитаны на переменный ток.

Поэтому, естественно, лучше перейти на подачу для нагрузки переменного тока. Сделать это можно тремя способами.

Устанавливается симистор с нагрузкой до диодного моста. При этом последний будет использоваться только для питания электронных компонентов устройства, поэтому можно использовать менее мощные диоды, например Д102 или вообще использовать готовый мост, например КЦ405. Симистор можно выбрать, например КУ208Г или ТС112.

Вот и все, что мы хотели рассказать про датчик звука для освещения. Надеемся, наша статья помогла вам понять принципы работы этого устройства, и рассказала о возможностях его применения. Отлично если вы смогли самостоятельно реализовать одну из предложенных схем или хотя бы приобрели промышленное реле для управления освещением. Пусть ваше жилище будет удобным и экономным.

Источник